100319 Low Power Hex Line Driver with Cut-Off

100319 Low Power Hex Line Driver with Cut-Off

General Description

FAIRCHILD

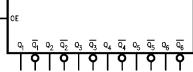
SEMICONDUCTOR

The 100319 is a Hex Line Driver with output cut-off capability. The 100319 has single ended ECL inputs and differential ECL outputs, designed to drive a differential, doubly terminated 50Ω transmission line (25Ω equivalent impedance) in an ECL backplane. A LOW on the Output Enable (OE) will set both the true and complementary outputs, to a high impedance or cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW state.

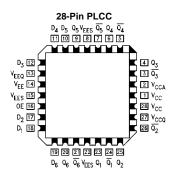
Features

- Differential outputs
- Output cut-off capability
- Drives a 25Ω ECL load
- 2000V ESD protection
- Voltage compensated range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:


Order Number	Package Number	Package Description
100319QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100319QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


D5

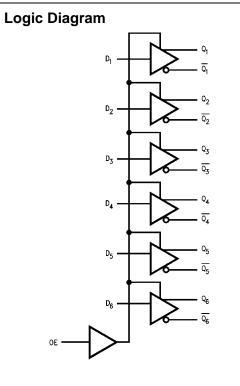
D₆

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
D _n	Data Inputs
Q _n	Data Outputs
\overline{Q}_n	Complementary Data Outputs
OE	Output Enable


© 1999 Fairchild Semiconductor Corporation DS010923

100319

Truth Table

Inp	uts	Out	puts
D _n	OE	Q _n	Q _n
L	Н	L	Н
н	н	н	L
Х	L	Cut-Off	Cut-Off

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care Cut-off = Lower-than-LOW State

Absolute Maximum Ratings(Note 1)

 $\label{eq:storage Temperature (T_{STG})} \\ \mbox{Maximum Junction Temperature (T_J)} \\ \mbox{Pin Potential to Ground Pin (V_{EE})} \\ \mbox{Input Voltage (DC)} \\ \mbox{Output Current (DC Output HIGH)} \\ \mbox{ESD (Note 2)} \\ \end{tabular}$

-65°C to +150°C +150°C -7.0V to +0.5V V_{EE} to +0.5V -100 mA ≥2000V

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (V _{EE})	-5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE}=-4.2V$ to $-5.7V,\,V_{CC}=V_{CCA}=GND,\,T_{C}=0^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH(Max)}$	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL(Min)}	25Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH(Min)}$	Loading with	
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL(Max)}	25 Ω to –2.0V	
V _{OLZ}	Cut-Off LOW			-1950	mV	$V_{IN} = V_{IH(Min)}$	OE = LOW	
	Voltage					or V _{IL(Max)}		
V _{IH}	Input HIGH Voltage	-1110		-870	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	-1830		-1530	mV	Guaranteed LOW S	Signal for All Inputs	
IIL	Input LOW Current			100	μΑ	$V_{IN} = V_{IL(Min)}$		
IIH	Input HIGH Current			360	μΑ	$V_{IN} = V_{IH(Max)}$		
I _{EE}	Power Supply Current, Normal	-119		-30	mA			
I _{EEZ}	Power Supply	-219		-75	mA	Inputs Open,		
	Current, Cut-Off					OE = LOW		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

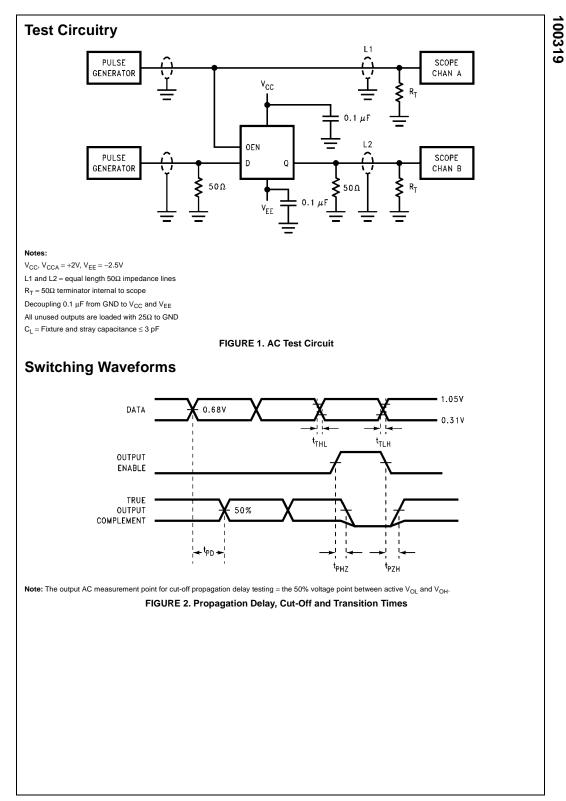
Symbol	Parameter	T _C :	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.65	2.10	ns	
t _{PHL}	Data to Output	0.05	2.10	0.05	2.10	0.05	2.10	115	
t _{PZH}	Propagation Delay	1.8	4.1	1.8	4.1	1.8	4.1		Figures 1, 2
t _{PHZ}	OE to Output	1.2	2.9	1.2	2.9	1.2	2.9	ns	
t _{TLH}	Transition Time	0.45	1.30	0.45	1.30	0.45	1.30	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.30	0.45	1.50	0.45	1.50	115	

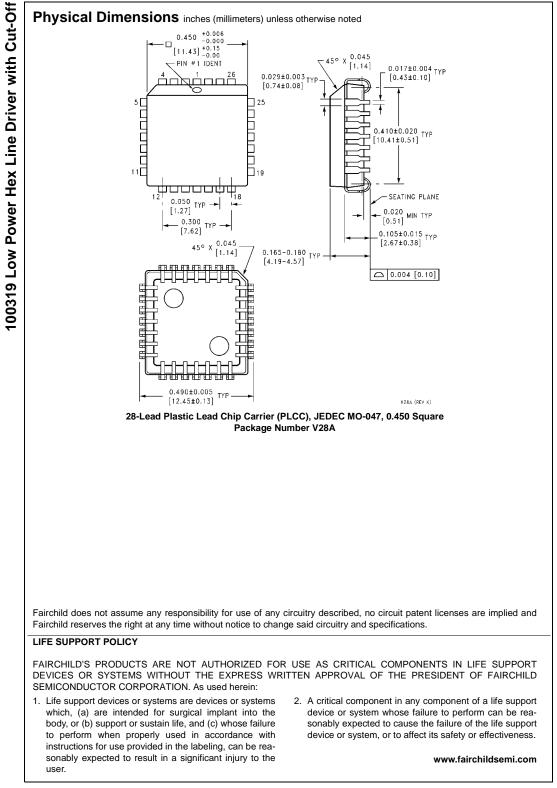
100319

100319

Industrial Version

DC Electrical Characteristics (Note 4) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$


Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol		Min	Max	Min	Max	Units	Conditions	
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$V_{IN} = V_{IH(Max)}$	Loading with
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL(Min)}	25Ω to $-2.0V$
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH(Min)}$	Loading with
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL(Max)}	25Ω to $-2.0V$
V _{IH}	Input HIGH Voltage	-1115	-870	-1110	-870	mV	Guaranteed HIGH	Signal for All
							Inputs	
V _{OLZ}	Cut-Off LOW Voltage		-1900		-1950	mV	$V_{IN} = V_{IH(Min)}$	OE = LOW
							or V _{IL(Max)}	
V _{IL}	Input LOW Voltage	-1830	-1535	-1830	-1530	mV	Guaranteed LOW Signal for	
							All Inputs	
Ι _{ΙL}	Input LOW Current		130		100	μΑ	$V_{IN} = V_{IL(Min)}$	
Ι _{ΙΗ}	Input HIGH Current		360		360	μΑ	$V_{IN} = V_{IH(Max)}$	
I _{EE}	Power Supply Current,	-119	-30	-119	-30	mA		
	Normal							
I _{EEZ}	Power Supply Current,	-219	-75	-219	-75	mA	Inputs Open	
	Cut-Off						OE = LOW	


Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

 $V_{\text{EE}} = -4.2 \text{V}$ to $-5.7 \text{V}, \, V_{\text{CC}} = V_{\text{CCA}} = \text{GND}$

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	onita	Conditions
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.65	2.10	ns	
t _{PHL}	Data to Output	0.05	2.10	0.00	2.10	0.05	2.10		
t _{PZH}	Propagation Delay	1.8	4.1	1.8	4.1	1.8	4.1	20	Figures 1Figure
t _{PHZ}	OE to Output	1.2	2.9	1.2	2.9	1.2	2.9	ns	2
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.30	0.45	1.30	0.45	1.30	ns	

